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The study by electron diffraction and high-resolution electron microscopy of several samples of the Ca 
Fe,Mn,-,O,-,, system (0.5 5 x 5 0.9). prepared at high temperatures in air, shows that compositional 
variations can be achieved in several ways as a function of the x and y values: intergrowing microdo- 
mains, disordered intergrowths, and randomly dispersed oxygen deficiency accommodate the nonstoi- 
chiometry in these materials. 0 1989 Academic Pres. Inc. 

Introduction 

In a series of previous papers (l--4), we 
dealt with nonstoichiometry in the system 
CaFe,Mn,-x03-y in order to study the ac- 
commodation of the oxygen vacancies in 
AMOxPy perovskites when the M positions 
are occupied by two cations able to adopt 
various oxidation states and several poly- 
hedral environments. 

Two series of samples of the title system 
were prepared at 1100 and 1400°C in air, 
respectively. An electron diffraction and 

I Present address: lnstitut Laue-Langevin, 156 X, 
38042 Grenoble Cedex, France. 

microscopy study of the low-temperature 
(LT) samples (I) have shown that this sys- 
tem contains two solid solutions of the 
perovskite-type (P) (5) and of the brown- 
millerite-type (B) (6) and also an intermedi- 
ate phase (G) with A3M308 composition (7, 
8) which makes disordered intergrowth 
with the B-type solid solution. High-tem- 
perature samples (HT) did accommodate 
the nonstoichiometry in a more complex 
manner showing a microdomain texture in 
the 0.2 4 x 5 0.4 range (2,3). Thus, the x = 
0.2 sample was formed by three-dimen- 
sional twinned domains with the 
perovskite-type structure (PTD), while the 
x = 0.4 material was constituted by six sets 
of domains: three PTD and another three 
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sets of domains characterized by a brown- 
millerite-type structure (BTD). 

In this paper, we report a study by elec- 
tron diffraction and microscopy of the 
CaFe.,Mnl-,03-Y system, prepared at high 
temperature, in the region 0.5 5 x 5 0.9. 

Experimental 

Samples of CaFe,Mni-x03pp (0.5 5 x 5 
0.9) were prepared from stoichiometric 
amounts of CaC03, cw-FezOj, and MnC03 
by heating at 1000°C in air for 48 hr to de- 
compose the carbonates. Then, the mix- 
tures were thoroughly reground, pelletized, 
and fired at 1400°C in air for 46 hr. Macro- 
scopically homogeneous black powders 
were obtained after quenching to room tem- 
perature and characterized by X-ray pow- 
der diffraction, using silicon as internal 
standard. 

Total amounts of calcium, iron, and man- 
ganese were confirmed by atomic absorp- 
tion spectrometry. The amount of Mn4+ 
was determined, as proposed by Fyfe (9, 
IO) by dissolving the sample in hydroch- 
loric acid and adding potassium iodide solu- 
tion in the presence of acetylacetone. The 
iodine liberated was determined by titration 
with Na2S203 solution in the presence of 
starch. 

TABLE I 

CHEMICAL ANALYSIS DATA OF THE HT SAMPLES 

AND UNIT CELL PARAMETER REFERRED TO THE 

PSEUDOCUBIC SUBCELL 

x Chemical composition (I, CA) 

0.5 CaFe:.:Mn;f&Mn” 0 0 I3 Z.M 3.775(I) 
0.6 CaFe3+Mn4+ Mn’+ 0 0.6 0.25 0 15 2.625 3.784(l) 
0.7 CaFe:;Mn&Mn3+ 0 0.13 2 583 G + B” 
0.8 CaFe~~Mn~.~,Mn’+ 0 “.oY z 555 G + B” 
0.9 CaFe::Mn&Mn3’ 0 0 05 z 52’ 3.822(l) 

“ G and B refer to the A3M308 and brownmillerite 
cells, whose unit cell parameters are G(l), a = 
5.476(l); b = 11.151(3); c = 5.360(l) A; B(6), a= 
5.5980(5); h = 14.7687(17); c = 5.4253(5) A. 

The oxidation state of iron was deter- 
mined by chemical analysis with 0. I N KZ 
Crz07 solution after dilution in HCI with an 
excess of Mohr’s salt, confirming that all 
iron was in the III state of oxidation. Chem- 
ical compositions are listed in Table I. 

Electron diffraction and microscopy 
were carried out on a Siemens Elmiskop 
102 microscope equipped with a 245” go- 
niometer stage, kindly lent to us by the 
CSIC (Instituto de Ciencia de Materiales, 
sede D), Madrid, Spain. Specimens were 
ultrasonically dispersed in n-butanol and 
then mounted on carbon-coated micro- 
grids. 

Results and Discussion 

The powder X-ray diffraction pattern of 
the x = 0.5 sample could be assigned to 
solid showing an average cubic perovskite- 
like structure with unit cell parameter a = 
3.775(l) A, although a slight broadening of 
Bragg reflections was observed. A similar 
situation was detected for the x = 0.6 mate- 
rial, where the increasing of the unit cell 
parameter (a = 3.784(l) A) can be attrib- 
uted to the smaller ionic size of Mn4+ with 
respect to both Fe3+ and Mn3+ (II). 

Since the anionic vacancy concentration 
of both solids is very high (y = 0.315 and y 
= 0.375 for x = 0.5 and x = 0.6, respec- 
tively), a study by electron diffraction and 
microscopy is necessary in order to eluci- 
date the microstructure of such materials. 

Figure la shows the electron diffraction 
pattern of the x = 0.5 sample along the 
[OOl],. zone axis, indexed on the basis of the 
cubic perovskite subcell (subindex c refers 
to such a subcell). This pattern and those 
observed by tilting around both a: and b,* 
axes reflects the same situation as that ob- 
served on the x = 0.4 material which was 
interpreted (cf. Ref. (2)) in terms of the in- 
tergrowth of six sets of microdomains: 
three of them having the perovskite-type 
structure (PTD) and the other three show- 
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FIG. la. Electron diffraction pattern of the s = 0.5 

sample along the [OOI], zone axis. 

ing the brownmillerite structure (BTD) with 
their long axis alternating at random in the 
three space directions. Certainly, the corre- 
sponding electron micrograph (Fig. I b) 

shows the presence of microdomains where 
the amount of BTD seems to be slightly 
more abundant than that previously ob- 
served on the x = 0.4 sample (2, 3). 

The situation becomes different by in- 
creasing the amount of iron, since two 
types of crystals are observed when x = 
0.6. Most of the crystals show the electron 
diffraction pattern appearing in Fig. 2a. The 
presence of two fourfold superlattices along 
a,* and br axes and extra spots located at 
(t $ 0), and equivalent positions suggest 
again a microdomain texture as already 
found in the previous sample which is re- 
flected in the corresponding micrograph 
(Fig. 2b), where the following d-spacing can 
be recognized: 

-Fringes at 14.8 A in areas marked Y 
and 2 corresponding to the dolo-spacing of a 
B-type cell oriented in two perpendicular 
directions. 

-Other regions (X and V) in which the 
~5.5 x 5.5 A fringes can be due either to 
the &,,- and dr~,,j-spacing of a B-type cell or 

FIG. lb. Corresponding electron micrograph. 
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the same spacing of an a,fi x 2a, x a,V? 
P-type cell. 

-Finally, fringes at 3.7 A (in T) corre- 
sponding to the d010-spacing of the P-type 
cell. 

It must be noticed that reflections (hM))a, 
with h + k = 2n + 1, are forbidden in the 
Pcmn space group of Ca2Fe205 (6). The ap- 
pearance of such reflections in the diffrac- 
tion pattern (Fig. 2a) may be due to slight 
modifications of the B structure when 
growing as microdomains or, more proba- 
bly, to multiple scattering. 

In order to complete the study of the re- 
ciprocal lattice, a series of tilts were per- 
formed around a: and b,* axes. Figure 3a 
shows the electron diffraction pattern cor- 
responding to the [IO?], zone axis. The 
spots located at (4 f 4), and (8 t $), indicate 
that the third perovskite axis also shows a 
fourfold superlattice. On the other hand, 
the diffraction maxima at (1 8 i)), and equiv- 
alent positions correspond to the third 
perovskite-like domain, as schematically 
shown in Fig. 3b. 

According to these results, we can con- 
clude that these kinds of crystals are also 
constituted by the juxtaposition of three 
PTD and three BTD, the brownmillerite be- 
ing for this composition the major compo- 
nent. 

On the other hand, a few crystals of the x 
= 0.6 sample did show a different behavior. 
Figure 4 shows the corresponding electron 
diffraction pattern along the [OOI], zone 
axis. Two threefold superlattices along a: 
and b,* axes can be appreciated. Tilts 
around both axes give patterns indicating 
that the third pervoskite axis also shows a 
threefold superlattice. This is the way in 
which compositional variations are accom- 
modated in Ca2LaFesOs.325, i.e., Ca2,3Lal,3 
Fe02.745 (12, Z3), where the material was 
constituted by a microdomain texture 
whose reciprocal lattice was formed by the 
intergrowth of three reciprocal nets with 

FIG. 2a. Electron diffraction pattern of the first type 
of crystals found in the x = 0.6 material. Zone axis 
roo11,. 

a,%‘2 x 3a, x a,V’2, the long axis alternat- 
ing at random in the three space directions. 
It is worth emphasizing that such parame- 
ters are characteristic of an A2M308, i.e., 
Ai’t402.~~ composition, where two octahe- 
dral layers alternate in an ordered way with 
a tetrahedral layer (24), the microdomain 
formation being accompanied by an oxida- 
tion process, i.e., of a decreasing in the va- 
cancy concentration. However, in our x = 
0.6 material, since the average anionic va- 
cancy concentration is higher (y = 0.375) 
and the cationic ratio 2: 1 is not estab- 
lished, most of the crystals accommodate 
the nonstoichiometry by formation of big 
domains of the brownmillerite-type struc- 
ture. 

For richer compositions in iron (x 2 0.7), 
the X-ray diffraction patterns become simi- 
lar to those observed in the low-tempera- 
ture samples (I). When x = 0.7 and x = 0.8, 
most of the diffraction maxima can be as- 
signed to a brownmillerite-type structure. 
However, there are some few peaks corre- 
sponding to the G-type structure. Electron 
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b 211 

b 

FIG. 3. (a) Electron diffraction pattern of the same crystal shown in Fig. 2a after tilting around b* 
axis. Zone axis [lOj],. (b) Schematic representation of the above pattern within a reciprocal net 
corresponding to the pervoskite substructure. 

diffraction and microscopy confirm that the 
nonstoichiometry is accommodated, as in 
LT samples, by means of disordered inter- 
growth of both B and G structures, as 
shown in Fig. 5. However, in these HT 
samples, the presence of the G phase is 
very small since the y values (see Table I) 
are 0.415 and 0.445 for x = 0.7 and x = 0.8, 
respectively, i.e., very close to the stoi- 
chiometric brownmillerite (AhlO&. 

When x = 0.9, both X-ray and electron 
diffraction patterns correspond to the 
brownmillerite-type structure (a = 5.563( 1) 
A, b = 14.835(5) A, c = 5.409(l) d;), the 
oxygen vacancies (y = 0.475), being, obvi- 
ously, randomly distributed. 

From the above results it can be seen that 
nonstoichiometry in HT samples of the Ca 
Fe,Mn,-,OJ-, system can be accommo- 
dated in several ways: microdomain forma- 
tion (0.2 5 x % 0.6), disordered inter- 
growths (0.7 .S x zs 0.8), and randomly 
dispersed oxygen deficiency (x = 0.9). The 
microdomains, which were not formed on 
LT samples, appear to be produced in a 
process of randomization of the superstruc- 

ture among the three space directions. In 
fact, in the course of some oxido-reduction 
processes of these ferrites, three-dimen- 
sional microdomains are not only preserved 

FIG. 4. Electron diffraction pattern of the second 
type of crystals found in the x = 0.6 material. Zone 
axis [OOI], 
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FIG. 5. Electron micrograph of the x = 0.8 sample along [OOI], . 

but multiply and, depending on composi- 
tion, structure, and thermodynamic condi- 
tions, three, six, or even nine sets of 

Co Mn 03 (P) 

microdomains have been observed, by elec- 
tron diffraction and microscopy, to coexist 
within one crystal (2, 4, 13, 15). It seems 

DISORDERED 
SOLID SOLUTION I NTERGRMHS 

ORTtlORHOH x CUBIC > 

’ PEROYSKITE TYPE 
1 SOLID SOLUTION 
I (PTD) 
I 
I 
t ORTHORHOM X CUBIC > 

PTD+ BTO PTD 

Br’D 
* 

GTD 

DISORDERED B-TYPE 
INTERGRWTWS SOLID 

CW@4 SOLUTION 

SOLID 
SOLUTION 

FIG. 6. Tentative phase diagram of the CaFe,Mn,-,03-,. system as quenched from 1100 and 1400°C in 
air. 
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that the presence of two cations in different 
oxidation states occupying simultaneously 
either A or M positions of the perovskite 
substructure facilitates the oxidation pro- 
cess. We have already observed that un- 
doped Ca2Fe205 does not oxidize when 
heated up to 1400°C in air (16). Since chem- 
ical analysis data and Mijssbauer spectros- 
copy studies (17) do not give evidence of 
Fe4+, we must suppose that Mn4+ is enter- 
ing Ca2Fe205 to facilitate microdomain for- 
mation in the B structure. When the 
amount of Mn4+ is very small, no qualita- 
tive changes are observed between both HT 
and LT samples, compositional variations 
taking place by either isolated planar or 
point defects. 

The study by electron diffraction and 
high-resolution electron microscopy of 
these materials confirms the important role 
that synthetic conditions play in the accom- 
modation of nonstoichiometry. As a con- 
clusion of the present work, a tentative 
phase diagram of the HT samples is pre- 
sented in Fig. 6. It can be seen, by compar- 
ing with the LT samples, that the oxygen 
content is a function of the metal composi- 
tion and annealing temperature, with in all 
cases, the HT phases being more reduced 
than the LT ones. The reason why micro- 
domains are not formed in HT samples for x 
z- 0.7 values seems to be, as discussed 
above, the tendency that Ca2Fe20s shows 
to segregation, resulting in small areas 
richer in manganese where the oxygen ex- 
cess is accommodated, originating slabs of 
the G phase which intergrowths in a disor- 
dered way with the B phase. 
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